BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 50 (2), 545-546 (1977)

Metal Phosphinylides and Phosphinothioylides. VII.¹⁾ The Structure of [Ph₂PX]M (X=0, S) in Solution and Their Disproportionation

Koshiro Goda, Hideyuki Gomi, Masaaki Yoshifuji, and Naoki Inamoto Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113 (Received August 31, 1976)

Synopsis. The species [Ph₂PO]M in THF were found to exist as Ph₂P-O-M by ³¹P-NMR, and [Ph₂PS]MgCl as Ph₂P-S-MgCl by Raman spectrum. The species [Ph₂PS]M undergo easy disproportionation by heating.

The species $[Ph_2PX]M$ (X=O, S) have been prepared by the reaction of sodium or magnesium with diphenylphosphinic (1a)^{2,3}) or diphenylphosphinothioic chloride (1b)³) (Method A) and by the reaction of butyllithium³) or Grignard reagents⁴) with diphenylphosphine oxide (2a) or sulfide (2b) (Method B).

The following equilibrium is possible in a solution of 3.

$$\begin{array}{ccc} Ph_2P{-}X{-}M & & \longrightarrow & Ph_2P(X)M \\ \textbf{4} & \textbf{4}' \end{array}$$

It was found from ³¹P-NMR data that [(EtO)₂PO]M exists as (EtO)₂P-O-M in solution.⁵⁾ The present paper describes the results of a reexamination of the reactions of 1 with metals by means of ³¹P-NMR and the structure of 3 in solution.

The reactions by Methods A and B were carried out in tetrahydrofuran (THF) at room temperature under nitrogen. The ³¹P-NMR data are given in Tables 1 and 2. The yields of 3 were nearly quantitative based on the ³¹P-NMR spectra, except for the case of M=MgCl in Method A (Table 1). We see that reactions of 1, especially 1b, with metals are very complicated,

Table 1. ³¹P-NMR data of reaction Mixture of **1** with metal (M) in THF (Method A)

2 William (NI) IN 1111 (William II)									
M	X=O		X=S		37' 11				
	$\delta_{_{\mathbf{P}}}$ (ppm)	Assign- ment	$\delta_{ m p}$ (ppm)	Assign- ment	Yield (%) ^{a)}				
none	-42.8	la	-79.8	1 b					
Li	-93.8	[Ph ₂ PO]- Li	16.2	$\mathrm{Ph_2PPPh_2}$	2				
			-37.0	$Ph_2P(S)$ - $P(S)Ph_2$	20				
			-59.8	Ph ₂ P(S)SLi	46				
Mg	-17.7	[Ph ₂ PO]- MgCl	15.9	$\mathrm{Ph_2PPPh_2}$	4				
			-37.9	$Ph_2P(S)$ - $P(S)Ph_2$	23				
			-59.0	Ph ₂ P(S)- SMgCl	46				

a) Based on the peak areas in the 31P-NMR spectra.

Table 2. ³¹P-NMR data of [Ph₂PX]M in THF (Method B)

	X=0		X=S		
RM or M	$\widetilde{\delta_{ m p}}$ (ppm)	Assign- ment	$\delta_{ m p} \ m (ppm)$	Assign- ment	
none	-22.9	2a	-20.8	2b	
(J=490 Hz) $(J=468 Hz)$					
n-BuLi	-93.8	[Ph ₂ PO]- Li	-20.7	[Ph ₂ PS]- Li	
n- BuMgCl	-90.0	[Ph ₂ PO]- MgCl	-14.3	[Ph ₂ PS]- MgCl	
NaH			-22.3	[Ph ₂ PS]- Na	
K			-25.0	[Ph ₂ PS]- K	

indicating dimerization, desulfurization, and disproportionation of **3b.**³⁾ Thus, for the preparation of **3**, Method B is preferable to Method A.

The phosphorus atom in 3a is trivalent (4 type) in THF (Tables 1 and 2), except for the case of M=MgCl in Method A.⁶⁾ However, the structure of 3b could not be determined, due to δ_P values being similar to those of 2b. Thus, the Raman spectrum of $[Ph_2PS]MgCl$ prepared by Method B was compared with spectra of some model compounds (Table 3). From the results the structure was determined to be 4 type. In the case of M=Li and Na, no Raman spectra could be obtained because of the emission of fluorescence.

TABLE 3. RAMAN SPECTRA

Compound	(cm^{-1})	$(\mathrm{cm^{-1}})$	
Ph ₂ P(S)H (THF)	650		
Ph ₂ P(S)OMe (THF)	638		
Ph ₂ P(S)SMe (THF)	658	537	
Ph ₂ P(O)SMe (THF)	_	568	
Ph ₂ PSEt (neat)	_	515	
[Ph ₂ PS]MgCl (THF)		530	

Easy disproportionation of **3b** was confirmed by the following experiments. Reaction of **1b** with lithium in THF at room temperature for 24 h afforded Smethyl diphenylphosphinodithioate (**5**) and methyl-diphenylphosphine sulfide (**6**) in a ratio of 5: 1 after treatment first with methyl iodide and then sulfur.

Refluxing of a mixture of **2b** and butyllithium in THF also gave **5** and **6** after a similar treatment (see Experi-

mental).

In this connection, a large contribution of metal diphenylphosphinodithioate is considered to take place in the reactions of [Ph₂PS]M with THF.⁷⁾

Experimental

 $^{31}\mbox{P-NMR}$ spectra were measured with a Hitachi R-20B-R-204 PB spectrometer using 85% phosphoric acid as an external standard. Raman spectra were taken with a JEOL-JSP-RS 4000 spectrometer.

Materials. Diphenylphosphinic (1a) and diphenylphosphinothioic chlorides (1b), diphenylphosphine oxide (2a) and sulfide (2b) were prepared by the methods described in a previous paper.³⁾ The following compounds were prepared by the reported methods: O-methyl diphenylphosphinothioate,⁸⁾ S-methyl diphenylphosphinodithioate,⁹⁾ and ethyl diphenylphosphinothioate.¹⁰⁾

Preparation of S-Methyl Diphenylphosphinothioate. To a mixture of 13.4 g (57 mmol) of diphenylphosphinothioic acid and 2.5 g (63 mmol) of sodium hydroxide in 50 ml of THF was added 6 ml of methyl iodide, and the mixture was stirred for 3 h at room temperature. After washing with water and extraction with benzene, the extract was distilled in vacuo, bp 190 °C/0.2 Torr yield 13.0 g (92%). The distillate solidified on standing, mp 49.0—50.5 °C (from cyclohexane). IR (KBr): 1435, 1118 (P-Ph), 1202 (P=O), and 565 cm⁻¹ (P-S); NMR (CCl₄): δ 2.10 (d, J_{PSCH} =13 Hz, 3H, SMe) and 7.2—8.0 (m, 10H, P-Ph); ³¹P-NMR (THF): δ_P —38.6 ppm.

Found: C, 62.91; H, 5.06; S, 13.05%. Calcd for $C_{13}H_{13}$ -OPS: C, 62.89; H, 5.28; S, 12.91%.

Disproportionation of [Ph₂PS]Li. A mixture of 1.405 g (6.4 mmol) of **2b**, 0.336 g (7.9 mmol) of lithium chloride, 12 mmol of butyllithium in hexane (8 ml), and 30 ml of THF

was refluxed for 3 h and 1 ml of methyl iodide was added. The presence of methyldiphenylphosphine, 5, and 6 was shown by means of gas chromatography (H 523 on Diasolid at 210 °C). Sulfur (0.38 g, 1.5 mmol) was added to the reaction mixture and the mixture was refluxed for several minutes. Only 5 and 6 were observed in the ratio 27:73.

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education. The authors thank Dr. Issei Harada and Mr. Shuji Imazeki for the measurement of Raman spectra.

References

- 1) For VI see: K. Goda and N. Inamoto, Bull. Chem. Soc. Jpn., 49, 1175 (1976).
- 2) L. Horner and P. Beck, Chem. Ber., **93**, 1371 (1960); L. Horner, P. Beck, and V. G. Toscano, ibid., **94**, 1317, 1323 (1961).
- 3) T. Emoto, H. Gomi, M. Yoshifuji, R. Okazaki, and N. Inamoto, *Bull. Chem. Soc. Jpn.*, **47**, 2449 (1974); K. Goda, H. Gomi, M. Yoshifuji, and N. Inamoto, *ibid.*, **47**, 2453 (1974).
- 4) R. F. Cann, S. Warren, and M. R. Williams, *J. Chem. Soc, Perkin Trans. 1*, **1972**, 2377.
- 5) K. Moedritzer, J. Inorg. Nucl. Chem., 22, 19 (1961).
- 6) The structure is unknown but a possible one might be of the 4' type such as Ph₂P(O)-MgCl and [Ph₂P(O)]₂Mg.
- 7) K. Goda, M. Yoshifuji, R. Okazaki, and N. Inamoto, Bull. Chem. Soc. Jpn., 48, 2484 (1975).
- 8) T. A. Mastryukova, T. A. Melent'eva, and M. I. Kobachnik, *Zh. Obshch. Khim.*, **35**, 1197 (1965); *Chem. Abstr.*, **63**, 11605 (1965).
- 9) W. A. Higgins, P. W. Vogel, and W. G. Craig, J. Am. Chem. Soc., 77, 1864 (1955).
- 10) A. Arbuzov, J. Russ. Phys. Chem. Soc., 42, 549 (1910).